
Abstract. Characteristic monomials for a ®nite group are
obtained by direct subductions of Q-conjugate repre-
sentations. They are shown to give a generating function
that is capable of solving enumeration problems.

Key words: Characteristic monomial table ± Direct
subduction ± Isomer enumeration ± Q-conjugacy
character table ± Markaracter table

1 Introduction

Major problems of chemical group theory are concerned
with electronic and vibrational spectra, symmetry prop-
erties of molecular orbitals, stereochemical properties of
molecules, etc. They have been treated mainly by means
of approaches based on linear representations and
irreducible representations [1]. Such types of approach
have been the central topics of most textbooks on
chemical group theory [2±10].

On the other hand, an alternative type of approach
based on permutation representations and coset repre-
sentations [11±14] has been applied to such problems as
combinatorial enumeration of isomers [15±23].

Throughout a series of papers [24±28], we have been
aiming at integrating both types of approach so as to
obtain a broader prospect of chemical symmetry. As a
result, the ®rst type of approach has been extended to be
capable of being applied to enumeration problems of no
original territory. Thus, we have reported a method of
combinatorial enumeration based on characteristic mo-
nomial tables, where the subduction of Q-conjugacy
representations has been a key concept for deriving such
characteristic monomial tables from Q-conjugacy char-
acter tables [26±28]. Although the subduction process
reported gives a full set of mathematical derivations [28],
it is so indirect that (1) each Q-conjugacy character of G
is converted into a linear combination of dominant
markaracters �G�=Gi�� and (2) each dominant mar-
karacter is in turn subducted into respective cyclic sub-

groups Gj to give a linear combination of the
markaracters of Gj. In particular, it is a disadvantage for
the indirect subduction to involve rather tedious calcu-
lations, because the coe�cients in the linear combination
of step (1) are rational numbers.

The subduction of Q-conjugacy representations can
be performed directly if each Q-conjugacy character of
G is subducted into a cyclic subgroup Gj to give a linear
combination of the markaracters of Gj. The present
paper deals with direct subductions, which are as useful
as, but simpler than indirect subductions for deriving
characteristic monomials.

2 Direct subductions versus indirect subductions

2.1 Indirect subductions

As shown in the next subsection, direct subductions are
derived by omitting intermediate steps of the indirect
subductions reported in a previous paper [28]. In order
to show the intermediate steps omitted, the indirect
subductions are formulated with matrix expressions in
place of the previous expressions by linear equations
[28]. Suppose a ®nite group G has a Q-conjugacy
representation bH` with a Q-conjugacy character bh`,
which appears as a row vector in a Q-conjugacy
character table of G:

DG �

bh1bh2
..
.

bh`
..
.

bhs

0BBBBBBBBB@

1CCCCCCCCCA
�

1CCCCCCCCCCCA

0BBBBBBBBBBB@

# G1 # G2 # Gj # GsbH1
bh11 bh12 � � � bh1j � � � bh1sbH2
bh21 bh22 � � � bh2j � � � bh2s

..

. ..
. ..

. . .
. ..

. ..
.

bH`
bh`1 bh`2 � � � bh`j � � � bh`s

..

. ..
. ..

. ..
. . .

. ..
.

bHs
bhs1 bhs2 � � � bhsj � � � bhss

�1�
Since such aQ-conjugacy representation bH` is a matured
representation, its character bh` is expressed by a linear
combination of dominant markaracters:
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bh` �Xs
i�1

a`iG�=Gi� �2�

for ` � 1; 2; . . . ; s, where each coe�cient a`i is a rational
number. For simplicity, the symbol G�=Gi� is used for
denoting dominant representations as well as the
corresponding dominant markaracters. When the coe�-
cients are collected to give a row vector called a
mutliplicity vector,

a` � �a`1; a`2; . . . ; a`s� �3�
for ` � 1; 2; . . . ; s, the coe�cients are obtained by solving
linear equations or equivalently by calculating a matrix
equation,bh` eMÿ1G � a` �4�
for ` � 1; 2; . . . ; s, where the matrix eMÿ1G appearing in
the left-hand side is the inverse of a markaracter table of
G, i.e.,

eMG �

1CCCCCCCCA

0BBBBBBBB@

# G1 # G2 # Gi # Gs

G�=G1� m11

G�=G2� m21 m22

..

. ..
. ..

. . .
.

G�=Gi� mi1 mi2 � � � mii

..

. ..
. ..

. ..
. . .

.

G�=Gs� ms1 ms2 � � � msi � � � mss

�5�
Equation 4 is transformed intobh` � a` eMG �6�
for ` � 1; 2; . . . ; s, which is formally related to Eq. (2) by
regarding each row of eMG as a row vector denoted by
the symbol G�=Gi�. The method reported in the previous
paper [28] is based on Eq. (4) or Eq. (6), in which such
coe�cients of rational numbers are calculated.

By collecting the multiplicity vectors (Eq. 3), we
construct an s� s multiplicity matrix A as follows:

A �

a1
a2
..
.

..

.

as

0BBBBBBB@

1CCCCCCCA �
1CCCCCCCCA

0BBBBBBBB@

G�=G1� G�=G2� G�=Gi� G�=Gs�
a11 a12 � � � a1i � � � a1s
a21 a22 � � � a2i � � � a2s
..
. ..

. . .
. ..

. ..
.

a`1 a`2 � � � a`i � � � a`s
..
. ..

. ..
. . .

. ..
.

as1 as2 � � � asi � � � ass
�7�

Thereby, Eq. (6) is transformed into a matrix expression,

DG � A eMG : �8�
The subduction of each dominant representation
G�=G`� # Gj gives a linear combination of the dominant
representations of Gj:

G�=G`� # Gj �
Xr

k�1
b�j�`k Gj�=G�j�k � �9�

The coe�cients b`k�j� (k � 1; 2; . . . ; r) of the linear
combination are calculated by

eMG#Gj
eMÿ1Gj � BGj �10�

The symbol eMG#Gj in the left-hand side of Eq. (10)
represents an s� r subducted matrix, in which the
columns corresponding to the subgroups of Gj are
collected from eMG, i.e.,

eMG#Gj �

1CCCCCCCCCCCCCCCA

0BBBBBBBBBBBBBBB@

# G�j�1 # G�j�2 # G�j�k # G�j�r

G�=G1� # Gj m�j�11
G�=G2� # Gj m�j�21 m�j�22

..

. ..
. ..

. . .
.

G�=Gk� # Gj m�j�k1 mk2 � � � m�j�kk

..

. ..
. ..

. ..
. . .

.

G�=Gr� # Gj m�j�r1 m�j�r2 � � � m�j�rk � � � m�j�rr

..

. ..
. ..

. ..
. ..

.

G�=Gs� # Gj m�j�s1 m�j�s2 � � � m�j�sk � � � m�j�sr

;

�11�

and the symbol eMÿ1Gj
represents the inverse matrix of the

dominant markaracter table of the subgroup Gj. The
symbol BGj in the right-hand side of Eq. (10) represents
an s� r multiplicity matrix,

BGj �

1CCCCCCCCCCCA

0BBBBBBBBBBB@

Gj�=G�j�1 � Gj�=G�j�2 � Gj�=G�j�k � Gj�=G�j�r �
b�j�11 b�j�12 � � � b�j�1k � � � b�j�1r

b�j�21 b�j�22 � � � b�j�2k � � � b�j�2r

..

. ..
. . .

. ..
. ..

.

b�j�`1 b�j�`2 � � � b�j�`k � � � b�j�`r
..
. ..

. ..
. . .

. ..
.

b�j�s1 b�j�s2 � � � b�j�sk � � � b�j�sr
�12�

For convenience, we use a row vector b�j�` selected from
the matrix BGj , i.e.,

b�j�` � �b�j�`1 ; b�j�`2 ; . . . ; b�j�`r � �13�
for ` � 1; 2; . . . ; s. Both sides of Eq. (10) are multiplied
by the multiplicity matrix A to give

A eMG#Gj
eMÿ1Gj
� ABGj � XGj ; �14�

where the symbol XGj represents an s� r multiplicity
matrix,

XGj �

1CCCCCCCCCCCA

0BBBBBBBBBBB@

Gj�=G�j�1 � Gj�=G�j�2 � Gj�=G�j�k � Gj�=G�j�r �
v�j�11 v�j�12 � � � v�j�1k � � � v�j�1r

v�j�21 v�j�22 � � � v�j�2k � � � v�j�2r

..

. ..
. . .

. ..
. ..

.

v�j�`1 v�j�`2 � � � v�j�`k � � � v�j�`r
..
. ..

. ..
. . .

. ..
.

v�j�s1 v�j�s2 � � � v�j�sk � � � v�j�sr
�15�
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2.2 Direct subductions

In Sect 2.1 we calculated the multiplicity matrix A, which
we introduced into Eq. (14) to obtain XGj . However, the
following discussion will show that calculation of A is
unnecessary for obtaining XGj .

Compare A eMG#Gj in the left-hand side of Eq. (14)
with A eMG in the right-hand side of Eq. (8). Since the
former can be derived from the latter by subduction,
Eq. (8) gives

DG#Gj � A eMG#Gj ; �16�
where DG#Gj in the left-hand side is generated from DG

(Eq. 1) by collecting the columns related to the
subgroups of Gj, i.e.,

DG#Gj �

1CCCCCCCCCCCCCA

0BBBBBBBBBBBBB@

# G�j�1 # G�j�2 # G�j�k # G�j�rbH1 # Gj
bh�j�11 bh�j�12 � � � bh�j�1k � � � bh�j�1rbH2 # Gj
bh�j�21 bh�j�22 � � � bh�j�2k � � � bh�j�2r

..

. ..
. ..

. . .
. ..

. ..
.

bH` # Gj
bh�j�`1 bh�j�`2 � � � bh�j�`k � � � bh�j�`r

..

. ..
. ..

. ..
. . .

. ..
.

bHs # Gj
bh�j�s1 bh�j�s2 � � � bh�j�sk � � � bh�j�sr

:

�17�
By introducing Eq. (16) into Eq. (14), we obtain

DG#Gj
eMÿ1Gj � XGj : �18�

The matrix expression (Eq. 18) does not contain the
intermediate matrix A [eq. (7)]. This fact is the basis of
naming the method ``direct subduction''. The disscussion
is summarized into a theorem, in which the matrix
expression is transformed into another formulation
using row vectors.

Theorem 1: The multiplicity vectors represented by

v�j�` � �v�j�`1 ; v�j�`2 ; . . . ; v�j�`k ; . . . ; v�j�`r � �19�
are obtained by

�bh` # Gj� eMÿ1Gj � v�j�` �20�
for ` � 1; 2; . . . ; s. The symbol �bh` # Gj� represents the row
vector obtained by the subduction (DG#Gj ).

This theorem gives a direct method of subduction of
Q-conjugacy representations with characters bh` into a
cyclic subgroup Gj.

Each element of the multiplicity vector [v�j�`k in Eq.
(19)] represents the multiplicity of the coset represen-

tation Gj�=G�j�k �, the degree of which is equal to

djk � jGjj=jG�j�k j. This value represents the size of the
corresponding orbit, to which a dummy variable sdjk is
assigned. Thereby, we de®ne a characteristic monomial
as follows by using the multiplicity vector (Eq. 19).

Z�bh` # Gj; sdjk� �
Yr

k�1
s
v�j�
`k

djk
�21�

Example 1: Let us examine the point group T, which has
a Q-conjugacy character table:

DT �
1A0@

# C1 # C2 # C3

A 1 1 1
E 2 2 ÿ1
T 3 ÿ1 0

�22�

The monomials for the column # C2 are obtained by
direct subduction. We select the # C1 and # C2 columns
from the Q-conjugacy character table of T to form a
3� 2 matrix. This matrix is multiplied by the inverse
� eMÿ1C2

� of the markaracter table of C2.

1 1

2 2

3 ÿ1

0B@
1CA

eMÿ1C2

1
2 0

ÿ 1
2 1

 !

�

1CCA
0BB@
C2�=C1� C2�=C2�

A 0 1

E 0 2

T 2 ÿ1

� � �
� � �
� � �

# C2

s1
s21

sÿ11 s22

�23�

The resulting 3� 2 matrix contains the multiplicities of
dominant markaracters of C2:

A # C2 � C2�=C2�
E # C2 � 2C2�=C2�
T # C2 � 2C2�=C1� � C2�=C2�
Since the sizes of orbits are calculated to be
jC2j=jC1j � 2 and jC2j=jC2j � 1, we obtain characteristic
monomials, as shown after dotted lines in Eq. (23).

The monomials for the column # C3 are also obtained
by direct subduction. We use the inverse ( eMÿ1C3

) of the
markaracter table of C3.

1 1

2 ÿ1
3 0

0B@
1CA

eMÿ1C3

1
3 0

ÿ 1
3 1

 !

�

1CCA
0BB@
C3�=C1� C3�=C3�

A 0 1

E 1 ÿ1
T 1 0

� � �
� � �
� � �

# C3

s1
sÿ11 s3

s3

�24�

The monomials for # C1 are obtained directly from the
®rst column of DT (Eq. 22) to be s1, s21, and s31, the
powers of which appear in the ®rst column. All the
monomials obtained above are collected to give a
characteristic nomomial table for T (Table 1). (

Example 2: Let us examine the point group D2d , which
has a Q-conjugacy character table:

DD2d �

1CCCCA
0BBBB@
# C1 # C2 # C02 # Cs # S4

A1 1 1 1 1 1
A2 1 1 ÿ1 ÿ1 1
B1 1 1 1 ÿ1 ÿ1
B2 1 1 ÿ1 1 ÿ1
E 2 ÿ2 0 0 0

�25�
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The monomials for the column # S4 are obtained by
direct subduction. We select # C1, # C2 and # S4 and
columns from the Q-conjugacy character table of D2d to
form a 5� 3 matrix. This matrix is multiplied by the
inverse ( eMÿ1S4 ) of the markaracter table of S4.
1 1 1

1 1 1

1 1 ÿ1
1 1 ÿ1
2 ÿ2 0

0BBBBBB@

1CCCCCCA�
eMÿ1S4

1
4 0 0

ÿ 1
4

1
2 0

0 ÿ 1
2 1

0B@
1CA

�

1CCCCCCCA

0BBBBBBB@

S4�=C1� S4�=C2� S4�=S4�
A1 0 0 1

A2 0 0 1

B1 0 1 ÿ1
B2 0 1 ÿ1
E 1 ÿ1 0

� � �
� � �
� � �
� � �
� � �

# S4
s1
s1

sÿ11 s2
sÿ11 s2
sÿ12 s4

:

�26�
We obtain characteristic monomials, as shown after
dotted lines in Eq. (26).

The monomials for cyclic subgroups are directly ob-
tained in a similar way. All the monomials are collected
to give a characteristic monomial table for D2d (Table 2).

3 Combinatorial enumeration
with obligatory minimum valency

We proposed the combinatorial enumeration of isomers
under the in¯uence of obligatory minimum valency
(OMV) [29, 30]. This enumeration is formulated to
assign a distinct ligand inventory to each orbit governed
by a coset representation. This formulation is able to be
combined with the characteristic monomials de®ned in
the present paper.

Suppose that a skeleton has a set of positions placed
under the action of the group G, which gives a permu-
tation representation P. The permutation representation
is subdivied into a set of coset representations:

P �
Xt

i�1
aiG�=Gi� �27�

Each coset representation G�=Gi� corresponds to an
orbit Dia with jGj=jGij positions, where a � 1; 2; . . . ; ai
and i � 1; 2; . . . ; t. Note that t represents the number of a
nonredundant set of subgroups. This value is in general
unequal to the value (s) concerning cyclic subgroups
only. The multiplicities ai can be calculated in the light
of Theorem 1 or Ref. [30]. Each coset representation (as
a matrix form) appearing in Eq. (27) is reduced into a set
of Q-conjugacy representations as follows:

G�=Gi� �
Xs

`�1
a�i�` bH` �28�

To treat OMVs, we assign a distinct ligand inventory to
each orbit Dia, where we give a dummy variable s�ia�djk

to
the orbit Dia governed by G�=Gi�. Thereby, Eq. (21) is
transformed into

Z�bh` # Gj; s�ia�djk
� �

Yr

k�1
�s�ia�djk
�v�j�`k �29�

The collection of characteristic monomials labeled with
�ia� (Eq. 29) in accord with Eq. (28) generates the
following monomial

Z�G�=Gi� # Gj; s�ia�djk
� �

Ys

`�1
Z�bh` # Gj; s�ia�djk

�
� �a�i�

`

�
Ys

`�1

Yr

k�1
�s�ia�djk
�v�j�`k

 !a�i�
`

�
Yr

k�1
�s�ia�djk
�v�ij�k �30�

where we place

v�ij�k �
Xs
`�1

a�i�` v�j�`k : �31�

The monomial (Eq. 30) is concerned with the orbit Dia
governed by G�=Gi�. Since the orbit takes the same
inventory, the two products appearing in Eq. (30) are
allowed to be exchanged. As a result, the product
concerning (s) is converted into the sum in the power of
the dummy variable, as shown in Eq. (31). When i runs
from 1 to t, the product of the monomials (Eq. 30) gives
the de®nition of a subducted cycle index (SCI) concern-
ing the subduction into Gj:

SCI�G # Gj; s�ia�djk
� �

Yt

i�1

Yai

a�0
Z�G�=Gi� # Gj; s�ia�djk

�

�
Yt

i�1

Yai

a�0

Ys

`�1
Z�bh` # Gj; s�ia�djk

�
� �a�i�

`

�
Yt

i�1

Yai

a�0

Yr

k�1
�s�ia�djk
�v�ij�k ; �32�

Table 1. Characteristic monomials for T

T # C1 # C2 # C3

A s1 s1 s1
E s21 s21 sÿ11 s3
T s31 sÿ11 s22 s3

Table 2. Characteristic monomials for D2d

D2d # C1 # C2 # C02 # Cs # S4
A1 s1 s1 s1 s1 s1
A2 s1 s1 sÿ11 s2 sÿ11 s2 s1
B1 s1 s1 s1 sÿ11 s2 sÿ11 s2
B2 s1 s1 sÿ11 s2 s1 sÿ11 s2
E s21 sÿ21 s22 s2 s2 sÿ12 s4

Nj
1
8

1
8

1
4

1
4

1
4
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where we place s�i0�djk
� 1 for a � 0 for remedying the case

of ai � 0. In a similar way to Def. 4 of Ref. [30], we have
the de®nition of a cycle index (CI) by starting from Eq.
(32)

CI�G; s�ia�djk
� �

Xs
j�1

Nj

Yt

i�1

Yai

a�0
Z�G�=Gi� # Gj; s�ia�djk

�
 !

�
Xs
j�1

Nj

Yt

i�1

Yai

a�0

Yr

k�1
�s�ia�djk
�v�ij�k

 !
; �33�

where we place

Nj �
Xs

i�1
mji � u�jGjj�

jNG�Gj�j �34�

in the light of Eq. (54) of Ref. [24]. The cycle index (Eq.
33) based on characteristic monomials is easily shown to
be equal to the counterpart based on unit subduced cycle
indices (USCIs) [30]. Hence, Theorem 4 of Ref. [30] is
restated in terms of the present formulation.

Theorem 2: Suppose gc of ligands Xc �c � 1; 2; . . . ; v� are
selected from a set of ligands:

X � fX1;X2; . . . ;Xvg ; �35�
where we have a partition:

�g� � g1 � g2 � � � � � gv � n : �36�
They are placed on n of the positions in a skeleton to give
isomers with the weight

Wg �
Yt

i�1

Yai

a�0

Y
m

wia�Xc� ; �37�

where the weight wia�Xc� is assigned to each orbit (Dia); the
symbol m in the last product is e�ective if Xc is placed on
the orbit Dia; and wi0�Xc� � 1. A generating function for
the total number Ag of isomers with the weight Wg is
represented byX

g

AgWg � CI�G; s�ia�djk
� ; �38�

into which the inventories,

s�ia�djk
�
Xv

c�1
wia�Xc�djk ; �39�

are introduced.

In a special case in which the weight wia�Xc� is con-
stant over all the ligands, we can place wia�Xc� � Xc. This
means that the weight Wg [Eq. (37)] can be regarded as
the molecular formula of an isomer. Hence, we obtain a
corollary.

Corollary 1: Suppose gc of ligands Xc �c � 1; 2; . . . ; v� are
selected from a set of ligands represented by Eq. (35),
where we have a partition represented by Eq. (36). They
are placed on n of the positions in a skeleton to give
isomers with the weight (molecular formula)

Wg �
Ym
c�1

X
gc
c �40�

A generating function for the total number Ag of isomers
with the weight Wg is represented byX

g

AgWg � CI�G; sdjk �; �41�

where

sdjk �
Xv

c�1
X djk

c : �42�

This corollary is equivalent to PoÂ lya's theorem,
though its de®nition of CI is di�erent from that of
PoÂ lya's theorem.

Example 3: Let us consider adamantane-2,6-dione as a
skeleton, where the carbon atom of each position is
replaced by a carbon, a nitrogen, or an oxygen atom.
This example has once been discussed with a di�erent
method using USCIs in Chap. 15 of Ref. [21]. Obviously,
the two carbonyl carbons can be ommitted from our
consideration, since they cannot be replaced by N or O.
Hence, we take acount of the four bridge positions (the
orbit D�a�) to be replaced by C, N or O and the four
bridgehead positions (the orbit D�b�) to be replaced by C
or N. The orbit D�a� is governed by the coset represen-
tation D2d�=C02�, while D�b� is governed by D2d�=Cs�. The
coset representation D2d�=C02� has a ®xed-point vector:
FPV = �4; 0; 2; 0; 0; 0�. This row vector is multiplied by
the inverse matrix of DD2d (Eq. 25) to give

�4; 0; 2; 0; 0; 0� �

1CCCCCCCA

0BBBBBBB@

A1 A2 B1 B2 E

# C1
1
8

1
8

1
8

1
8

1
4

# C2
1
8

1
8

1
8

1
8 ÿ 1

4

# C02 1
4 ÿ 1

4
1
4 ÿ 1

4 0

# Cs
1
4 ÿ 1

4 ÿ 1
4

1
4 0

# S4 1
4

1
4 ÿ 1

4 ÿ 1
4 0

� �1; 0; 1; 0; 1� :
�43�

The row vector in the right-hand side indicates A1 � B1

�E. Thus, the coset representations are reduced into
Q-conjugacy representations as follows:

D2d�=C02� � A1 � B1 � E

D2d�=Cs� � A1 � B2 � E

These results are apparently equal to the ones obtained
for irreducible representaions [31], since the group D2d
is matured. However, the symbols A1 etc. used in the
present paper represent Q-conjugacy representations,
while the counterparts used in Ref. [31] express irreduc-
ible representations.

From the characteristic monomials collected in Table
2, we obtain SCIs for each orbit by using Eq. (32):

408



These SCIs are equal to the USCIs obtained with a
di�erent method [32]. For relevant results using USCIs,
see Chap. 15 of Ref. [21].

Thereby, the CI (Eq. 33) for the present enumeration
is obtained to be

f � CI�D2d ; sdjk �
� 1

8�s41��a��s41��b� � 1
8�s22��a��s22��b� � 1

4�s21s2��a��s22��b�

� 1
4�s22��a��s21s2��b� � 1

4�s4��a��s4��b� ; �44�
where the superscripts �a� and �b� designate correspon-
dence to the orbits D�a� and D�b�.

The ligand inventories [Eq. (39)] for this case are
obtained as follows.

s�a�d � Cd � Nd � Od for D�a� �45�
s�b�d � Cd � Nd for D�b� �46�
The former inventory is free from the restriction due to
the OMV (�2) of the bridge positions, since the
valencies of C, N and O are equal to or greater than 2.
On the other hand, the latter inventory indicates the
restriction due to the OMV (�3) of the bridgehead
positions. They are introduced into Eq. (44) of Theorem
3 and expanded to give a generating function:

f � C8

� 2C7N � C7O

� 6C6N2 � 4C6NO� 2C6O2

� 10C5N 3 � 12C5N 2O� 6C5NO2 � C5O3

� 13C4N 4 � 19C4N 3O� 15C4N 2O2 � 3C4NO3

� C4O4

� 10C3N 5 � 19C3N 4O� 18C3N 3O2 � 6C3N 2O3

� C3NO4

� 6C2N6 � 12C2N5O� 15C2N4O2 � 6C2N3O3

� 2C2N2O4

� 2CN 7 � 4CN 6O� 6CN 5O2 � 3CN 4O3 � CN 3O4

� N 8 � N7O� 2N 6O2 � N5O3 � N 4O4 �47�

where the coe�cient of the term C`N mOn is the number
of isomers with the formula C`NmOn.

To illustrate this enumeration six diaza derivatives
that correspond to the coe�cient of the term C6N 2 in
Eq. (47) are shown in Fig. 7. These derivatives are free
from the restriction due to the OMV. It should be noted
that the present enumeration regarded a pair of en-
antiomers as one isomer, if the isomer is chiral. Hence,

Fig. 1 illustrates an arbitrary enantiomer selected from
each pair of enantiomers.

On the other hand, the coe�cient of the term C6O2

indicates the existence of two dioxa derivatives, as il-
lustrated in Fig. 2. This case shows the OMV restric-
tion, where O is incapable of substituting for the
bridgehead positions of the skeleton. This result stems
from the use of the ligand inventory represented by
eq. (46).

In additon, Fig. 3 shows an intermediate case con-
cerning the term C6NO. Note that C and N are free from
OMV while O is incapable of substituting for any
bridgehead positions. Hence, the number of resulting

Fig. 1. Diaza derivatives. For a chiral isomer, an arbitrary
enantiomer is depicted

Fig. 2. Dioxa derivatives. For a chiral isomer, an arbitrary
enantiomer is depicted

orbit reduction # C1 # C2 # C02 # Cs # S4
D�a� D2d�=C02� = A1 � B1 � E s41 s22 s21s2 s22 s4
D�b� D2d�=Cs� = A1 � B2 � E s41 s22 s22 s21s2 s4

Nj
1
8

1
8

1
4

1
4

1
4
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azoxa derivatives is four, which appears as the coe�cent
of the term C6NO in Eq. (47).

Figures 1±3 correspond to the third row of Eq. (47).
Since each row of Eq. (47) contains terms having the
same power on C, the coe�cients of these terms indicate
the e�ects of OMV restriction. The present enumera-
tion agrees with the previously itemized enumeration
[21].

4 Conclusion

Characteristic monomials for a group G are obtained by
direct subductions of Q-conjugate representations:

1. The restriction of aQ-conjugacy character table of the
group G into subgroup Gj to give DG#Gj

2. The multiplication of DG#Gj by the inverse of the
dominant markaracter table of Gj to give a multi-
plicity matrix XGj

3. The construction of a characteristic monomial on the
basis of the multiplicities appearing as a row of the
matirix XGj .

The resulting characteristic monomials are shown to give
a generating function that is capable of solving enumer-
ation problems.
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Fig. 3. Azoxa derivatives. For a chiral isomer, an arbitrary
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